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By means of computer simulations we investigate the dynamical behavior of a binary lattice-gas
mixture with short-range interactions in order to provide a stringent test of mode-coupling theory
(MCT). The dynamics of the particles is given by Monte Carlo-like moves that change the positions
of the particles and binary collisions that change the velocities. By monitoring the self part of the van
Hove correlation function we find the low-temperature dynamics to be glasslike. In accordance with
MCT, the imaginary part of the dynamic susceptibility x” shows a well-defined o peak whose high-
frequency wing follows a von Schweidler law with an exponent that is independent of temperature.
The low-frequency wing of the peak follows a different power-law dependence that corresponds to a
power law of the form —P+ A/ t (A,P,6> 0) in the self part of the intermediate scattering function
Fs1(k,t). In agreement with MCT we find that the diffusion constant for one of the two types of
particles, the relaxation times of Fs;(k,t), the location of the o peak in the susceptibility, and the
prefactor of the von Schweidler law all have a power-law dependence on temperature, (T — T¢)?,
for T > T. at constant density. As predicted by the theory, the critical temperatures T, for the
different quantities are the same within the statistical error. However, in contradiction to MCT, the
critical exponents v vary from one quantity to another. The value of the Lamb-Mdgssbauer factor
shows qualitatively the wave-vector dependence predicted by MCT. The self part of a second kind of
correlation function exhibits the two power laws predicted by MCT for the high- and low-frequency
wings of the 3 relaxation. We show that, in the vicinity of the minimum in x”, the scaling behavior
predicted by MCT holds. However, the location of this minimum at a given temperature depends
on the quantity investigated, contrary to the predictions of MCT. Moreover, the value of X" at this
minimum exhibits a power-law dependence on temperature with an exponent that is significantly
larger than the one predicted by MCT. We also find that the height of the a peak as well as the
total energy per particle have a power-law dependence on temperature and that the corresponding
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critical temperatures are close to those obtained for the other quantities.
PACS number(s): 61.20.Ja, 64.70.Pf, 51.10.4+y, 05.20.—y

I. INTRODUCTION

In the 1970s mode-coupling approximations, originally
applied by Kawasaki for the description of second-order
phase transitions [1], were used successfully for the de-
scription of the dynamics of dense liquids [2, 3]. Later it
was recognized that the solution of the equations result-
ing from the mode-coupling approximations, which are
very similar to the equations obtained from the so-called
fully renormalized kinetic theory for dense fluids (3, 4],
can lead to singularities in transport coefficients and to a
structural arrest if the system is cooled (or compressed)
enough [5,6]. Structural arrest means here that the inter-
mediate scattering function F(q,t) = (pq(t)pq(0)) does
not decay to zero in the long-time limit. Here p4(t) is
the density fluctuation for wave vector q at time t and
() denotes the average over the canonical ensemble. This
arrest happens at a critical temperature T, (or a criti-
cal density n.) at which the dynamics changes from er-
godic to nonergodic. As the intrinsic structure of the
liquid does not change significantly when the system is
cooled from temperatures slightly above T, to tempera-
tures slightly below T, one ends up with a frozen liquid,
i.e., a glass. Thus T, was tentatively identified with the
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calorimetric glass transition temperature 7,. Subsequent
analysis led to the conclusion that the structural arrest
predicted by mode-coupling approximations is not the
same as the calorimetric glass transition but rather is
related to dynamic anomalies in supercooled liquids at
temperatures above T,. The application of the mode-
coupling equations to supercooled liquids and the dis-
cussion of their solution is called mode-coupling theory
(MCT) and has made remarkable advances the past few
years (7, 8]. The two recent review articles by Gétze and
by Gotze and Sjogren are an excellent introduction to
the subject, and the reader will find most of the relevant
references there [9, 10].

Since MCT makes many very interesting predictions
about the behavior of certain equilibrium correlation
functions and the type of singularities of certain trans-
port coefficients and relaxation times (see Sec. II for
details), experiments were performed to look for these
anomalies. By means of neutron and light scattering and
various spectroscopic techniques, the intermediate scat-
tering function and the susceptibility for various systems
were investigated, and several predictions of the theory
were confirmed [11-18]. Whereas the earlier experiments
were often able to test the predictions in only a qualita-

3281 ©1993 The American Physical Society



3282

tive way [12-15], newer results also show an impressive
quantitative agreement of experiment and theory [19-23].

Predictions of MCT have been tested and observed for
a wide variety of liquids, including organic glass formers,
ionic glass formers, and polymers. These systems are con-
siderably more complex than the simple atomic liquids
whose kinetic theory first led to a derivation of equa-
tions containing mode-coupling terms. This has led to
the equations of MCT being regarded as a general math-
ematical model for nonlinear relaxation dynamics [9, 10],
even for systems for which the equations have not been
derived from a more microscopic theory. However, it
should be kept in mind that MCT is not a universally
valid theory in the sense that all supercooled liquids show
the behavior predicted by the theory. Although for all
dense liquids the equations of motion for the correlators
presumably contain mode-coupling terms, for some sys-
tems these terms might be so small compared with other
terms that they do not lead to any measurable effect. So
far no criterion is known to decide a priori whether or
not a system should show the phenomena predicted by
MCT, and many systems do not seem to behave accord-
ing to the theory. Thus, adding to our understanding of
the kind of systems to which MCT applies and the extent
to which it does so is of great importance.

MCT has not only been tested in real experiments but
has also been used to interpret the results of computer
simulation studies of supercooled liquids [24-30]. As with
real experiments, some simulations seem to confirm cer-
tain predictions of the theory and others do not. One
problem with computer simulations is that simulated su-
percooled liquids are likely not to be thoroughly equi-
librated if the runs are not much longer than the long
relaxation times that prevail at such low temperatures.
This of course can be a big disadvantage for testing an
equilibrium theory. Another handicap of computer simu-
lations is that the time range that a simulation can cover
is usually only two or three orders of magnitude larger
than typical microscopic times, whereas some of the tests
of the predictions of MCT require time windows which
are considerably larger. However, these kinds of “com-
puter experiments” have a big advantage over real exper-
iments: they allow the measurement of many different
correlation functions, some of which are almost impossi-
ble to measure in real experiments, at the same time and
therefore for the same thermodynamic state. This makes
it possible to perform stringent tests of certain predic-
tions of MCT. These tests would be very difficult for real
experiments since their outcome is very sensitive to the
thermodynamic state.

The system we deal with in this paper is a kinetic
lattice gas with particles having a hard core and other
short-range interactions. Lattice gases, originally pro-
posed to study hydrodynamic phenomena [31], have
found widespread use in studying many kinds of dynam-
ical behavior. A representative list of these topics can be
found in [32]. The main reason for this popularity is that
their implementation on a computer can be made very ef-
ficient, thus allowing the investigation of time scales that
are considerably longer than those accessible for more fre-
quently studied systems, such as Lennard-Jones particles
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or soft spheres. Thus with this model, it will be possible
to make tests of MCT that are probably more sensitive
than similar tests performed on more commonly studied
systems since one can make longer runs to equilibrate
and cover larger time windows for the correlation func-
tions. In addition it can be hoped that, because of the
simple nature of lattice-gas systems, it will also be pos-
sible to make progress on the analytical side so that the
phenomenon of the MCT singularity can be better un-
derstood [33]. Note that, although lattice-gas models for
supercooled liquids have been investigated before [34, 35],
no comparison with MCT predictions have been made so
far. Since MCT has become regarded as a general model
for nonlinear relaxation, it is not unreasonable to test it
for kinetic lattice gases.

In the next section we summarize those formulas of
MCT that are important for this work. Section III intro-
duces the model and gives the details of the simulations.
Section IV is then devoted to the presentation and dis-
cussion of the results, and in Sec. V we give a summary
and draw our conclusions.

II. MODE-COUPLING THEORY

Mode-coupling theory, as formulated in the review ar-
ticles of Gotze [9] and Gotze and Sjogren [10], is a very
general theory that can explain and make predictions
about a wide variety of types of relaxation behavior of
supercooled liquids. In this section, and in most of the
text of this paper, we shall be concerned with the mode
coupling theory of what is called a B transition at an
Aj singularity (or As fold). Other types of transitions or
singularities can also arise and lead to different kinds of
relaxation behavior near T,. Moreover, we consider only
the case in which coupling of particle densities to cur-
rents, which leads to phonon assisted transport, is com-
pletely neglected. When this coupling is included in the
theory, the dynamical singularity is avoided, the mode
coupling equations predict ergodic behavior even below
T,., and the behavior of the correlation functions near 7,
may be either slightly or significantly changed, depend-
ing on the strength of the coupling. Unless otherwise
noted, whenever MCT is referred to in the following dis-
cussion, this particular special case is what is meant. It is
in fact the version of the theory that has been most well
developed and most extensively compared to experiment.

In the following we compile those formulas of MCT
which are relevant for our work and some of their im-
plications. Their derivation can be found in the original
papers or in the review articles by Gotze and by Gotze
and Sjogren [9, 10].

Consider a system consisting of IV classical, identical
particles. The central focus of MCT is the behavior of
the equilibrium correlation functions ®4(t) obtained by
normalizing the intermediate scattering function F(q,t)
by the static structure factor Sg:

Qy(t) = (pg(t)p-q(0))/Sq - (1)

Also the dynamic structure factor S(q,w), given by the
time Fourier transform of F(q,t), plays an important
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role in the theory. The fluctuation-dissipation theorem
connects wS(q,w) with the imaginary part of the dy-
namic susceptibility x”(q,w), and in the literature of
MCT these two quantities are often set equal to one an-
other, i.e., x"(q,w) = wS(q,w).

Equations of motion for the correlator ®4(t) lead to the
following expression for its Laplace transform ®,(z) =
i [y exp(izt)®y(t) (for Imz > 0):

Dy(2) = —1/{z - Q3/[z + M,y(2)]} . (2)

Here Q, = (¢?v?/S;)'/? is a characteristic frequency, and
v = 4/kgT/m is the thermal velocity. M, is a relaxation
kernel, and in the simplest form of MCT (i.e., when the
couplings to currents and to fluctuations of the energy
are neglected), it is approximated by the functional

My(t) = > V¥ (q,q1)%(2)

q1
1
*3 Z V3 (q,q1,42)Dq, ()P, (t) + -+ -

q91,92
®3)

Vertices V) are non-negative and can, under certain
approximations, be expressed as functions of S; and are
therefore dependent on temperature (or density).

When Egs. (2) and (3) are solved for certain choices
of the vertices V{9, it is found that under certain condi-
tions the correlation functions do not decay to zero in the
limit of long times, which suggests that the dynamics of
the system is not ergodic. Let us consider the situation
in which the density of the system is fixed and the tem-
perature T is the only thermodynamic variable required
to specify the state of the system. The states for which
the correlation functions decay to zero are interpreted as
liquid states and the highest temperature at which the
functions do not decay to zero is denoted T.. The transi-
tion from ergodic behavior (above T;) to nonergodic be-
havior (below T) is the important dynamical singularity
predicted by MCT. In discussions of MCT, the scaled
temperature difference from the transition temperature
is denoted by € = (T, — T') /T, and MCT also introduces
a so-called exponent parameter A\, which is system depen-
dent and satisfies 0 < A < 1. The theory makes detailed
predictions about how the correlation functions behave
as a function of time ¢, €, and A, for small values of e,
i.e., for states near the transition temperature.

Furthermore, MCT predicts not only that the above
mentioned correlators ®;, behave in the way explained
below, but also that all other correlators ®xy between
quantities X and Y that have a nonzero overlap with
density fluctuations (i.e., {(pgX) # 0 and (pY") # 0) be-
have in the same way. In this section we will therefore
drop the subscript q from all quantities, and it is un-
derstood that the quoted results apply for all correlators
®xy where X and Y satisfy the above-mentioned condi-
tions. However, here and throughout the paper we will
still use the notation as if X =Y = p,, e.g., we will still
denote the space-time Fourier transform of ®xy (r,t) by
S(q,w) and will call it the dynamic structure factor.

Most of the predictions MCT makes fall into two cate-
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gories: statements about the a relaxation and statements
about the 3 relaxation. Many of these predictions can be
stated most easily in terms of the imaginary part of the
dynamic susceptibility x”(q,w). Note that all of the fol-
lowing formulas are considered to be valid only in the
limit |¢] — O since the dynamical equations for the cor-
relators were solved only in this limit.

A. a relaxation

The « relaxation governs the long-time behavior of the
correlators and is signaled by a peak at low frequencies in
x"(w). In spectroscopic experiments it is observed that
the position wpax of this peak moves rapidly towards
smaller frequencies as the temperature is lowered, show-
ing the divergence of the corresponding relaxation times.
MCT makes the following predictions:

For T > T, (e < 0) the frequency wmayx varies critically
with temperature, i.e.,

Wmax X |6|‘Y 3 (4)
where exponent ~ is given by
1 1
=—+ = 5
R + 2b (5)
and a and b are the (unique) solutions of the equations

I'(1—a)?/T(1 —2a) =T(1 +b)%/T'(1 + 2b) = A
(6)

Here I'(z) stands for the I' function. Since A depends
on the system, a and b, and therefore also 7, are not
universal. In addition it can be shown that 0 < a < 1/2
and b > 0 hold and therefore v > 1.

The critical behavior of wy,x leads to a similar behav-
ior for the diffusion constant D. Thus in the vicinity of
T, one expects

D « |€e|7, e<0 (7)
with the same value of v as appears in Eq. (4).

The shape of the a peak for a given system is predicted
by MCT to be independent of temperature in the sense
that by appropriate scaling of time, which corresponds
to a shift of the curves x”(w) parallel to the frequency
axis in a logw plot, o peaks corresponding to different
temperatures can be made to collapse onto a single mas-
ter curve. This feature is called the time-temperature
superposition principle.

Calculations on simple model mode-coupling equations
have shown that the low-frequency part of this master
curve can be well fitted by the time Fourier transform of
a Kohlrausch-Williams-Watts (KWW) law. This means
that in the time domain the long-time behavior of the
correlator ®(t) can be fitted very well by the KWW law,
ie.,

®(t) = Aexp[—(t/7)P], 0<B<1 . (8)

Note that the time-temperature superposition principle
implies that the KWW exponent 3 is independent of tem-
perature and that the main temperature dependence of
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®(t) is in the time scale 7(T"). In general the value of
B will depend on the quantity studied; i.e., different cor-
relators will have different values of 8. For 8 < 1 the
width of the a peak is broadened as compared with the
Debye law (8 = 1), a property called « stretching. A
value of 3 of 0.5 leads, for example, to an « peak with a
half-width of about two decades in a plot of x”(w) ver-
sus logw, whereas a Debye peak has only a width of 1.14
decades. Hence the former peak is almost one order of
magnitude broader than the latter one.

For the high-frequency wing of the a peak, systematic
deviations from the KWW law are predicted. This range
of the spectrum coincides with the low-frequency part of
the (8 relaxation, which we will discuss now.

B. B relaxation

The B-relaxation process occurs in the time range be-
tween microscopic times and the large times for which
the a process becomes relevant. In this time interval the
solutions of Egs. (2) and (3) are of the form

®(t) = f+ h/lelge(d) with & =t|e|V/22/ty . (9)

Here h is an amplitude factor that is independent of tem-
perature, but in general dependent on the quantity stud-

ied, to is a microscopic time, and =+ refer to 620, respec-
tively. The constant f, the nonergodicity parameter, de-
pends weakly on temperature and also on the quantity
studied. For the case X = Y = pg, f is the Debye-
Waller factor, while for the case X =Y = pj, where pj

is the self part of the density fluctuations, f is the Lamb-
Mossbauer factor. Equation (9) shows that ®(t) — f is a
product that can be separated into a factor g4 that only
depends on the rescaled time ¢ and a time-independent
factor that depends on temperature and in general on the
quantity under investigation. The function g (£) has no
explicit temperature dependence and for ¢ < 1 is given
by a power law

gx() i . (10)
For ¢ > 1, one finds on the glass side (i.e., € > 0)

g+() = 1/V1-X (11)
and on the liquid side (e < 0)

g-(f)=-Bf* with B >0. (12)
Equation (11) holds for all £ > 1, whereas Eq. (12) is
valid only for those times for which h4/[e[g—(f) is small
compared to one. Note that exponents a and b appear-
ing in Egs. (10) and (12) are the same quantities that
appeared in Eq. (5), which shows how closely, from the
point of view of MCT, the o and J relaxation are tied
together.

The power law in Eq. (12) is called the von Schweidler
law. Note that exponent b and exponent 8 in the KWW
law are not related to each other. Therefore the von
Schweidler law should not be considered as a short-time
expansion of the KWW law.
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From Egs. (9) and (11) we see that the asymptotic
value of ®(¢) for long times will grow like /€ when the
temperature is lowered below T,. Thus the theory pre-
dicts an anomalous increase of f over its regular temper-
ature dependence for € > 0.

Both power laws in (10) and (12) will give rise to a
power law in the imaginary part of the susceptibility as
well, but now with exponents a and —b, respectively.
Therefore there will be a minimum in x”(w) whose posi-
tion and value we denote by wmin and xi;,, respectively.
MCT makes the prediction that both quantities vary crit-
ically as well, i.e.,

Wmin X |€|1/2a y (13)

Xiin o< €]/ 14
min

Because g4 in Eq. (9) is independent of the quantity
studied, the theory implies that the exponents a and —b
and the frequency wmnin are independent of the quantity
under investigation.

III. MODEL

In this section we introduce our model and give some
of the technical details about our simulation.

The model is a kinetic lattice gas in which each particle
has a discrete set of possible positions on the vertices of
a simple cubic lattice and has six possible values of the
momentum, all of the same magnitude and pointing along
the +z, +y, and +z directions. Moreover, in this model,
time is also regarded as a discrete variable. This complete
discretization of position, momentum, and time can lead
to enormous computational efficiency. The model can be
regarded as a type of “cellular automaton” model. A
major goal of this work is to combine the efficiency that
cellular automata calculations can achieve with a model
that contains some of the important physical features of
real glass forming liquids.

To mimic the strong short-ranged repulsive forces of
real liquids, we chose to make the interparticle potential
infinite if two particles are on the same lattice site. To
give the system thermodynamic properties that are non-
trivially dependent on temperature, we included some
additional short-ranged attractions and repulsions of fi-
nite strength. To prevent crystallization at low temper-
atures we decided to have a mixture of particles: N4 of
type A and Ng < N4 of type B. To simplify the model,
the interaction between particles of the same kind was
chosen to be the same for both species. The interaction
between like particles was chosen to be

oo, r=0,1

Vaa(r) =Vep(r)=4q 1, r=v2 (15a)
0, r>v2 ,
and that for unlike particles was chosen to be
oo, r=0,1
-1, r= \/§
VAB(’I‘) = VBA(T) = 1’ r= \/5 (15b)
0, >3
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Here the unit of length is the lattice spacing and the units
of energy is Va4 (Vv2).

This choice of Vap(r) prevents the formation of large
three-dimensional crystals at low temperatures if the con-
centrations of A and B particles are significantly differ-
ent. However, two-dimensional crystallites consisting of
planar arrays of particles with each A particle having four
B particles as neighbors at a distance of v/2 and each B
particle having four A particles at that distance, are still
possible. At low density the ground state of the system
will consist of many such crystallites arranged in a ran-
dom way. The size of these crystallites is determined by
the excess of the number of A particles over the num-
ber of B particles as the former will form the boundary
of the crystallites. Thus at low density the ground-state
energy per particle will be emin = —4Np/(Na + Np)
since in this case every B particle is surrounded in an
optimal way by four particles of type A. Note that the
ground state is highly degenerate as each crystallite can
be moved around without changing the energy of the sys-
tem as long it does not start to interact with another
crystallite.

The state of a system can be regarded as a point in
a discrete phase space. In the following discussion we
will denote the general phase point by lower case letters,
eg., a,b.

The energy of a phase point E(a) is simply chosen
to be the sum of the potential energies of interaction
between each pair of particles. Kinetic energy is ignored
because we assume that each of the six allowed values
of momentum has the same magnitude and hence the
same value of the kinetic energy. Thus, in this model the
kinetic energy is a constant and can be absorbed into the
zero of energy. At equilibrium, the probability that the
system is in a state a is

P74 = exp[-BE(a)]/Q(B) , (16)
where
Q(B) = _exp|-BE(®)] , (17)
b

B = 1/kgT, T is the temperature of the system, and
kp is Boltzmann’s constant. (P°? and @ also depend, of
course, on N4, Npg, and the number of lattice sites.)
The dynamics of the model must be characterized by
a set of rules for determining how the discrete state of
the system changes from one discrete time to another.
The real Hamiltonian dynamics in a continuous-phase-
space description of a fluid has a number of important
properties: It is deterministic. It is time-reversal invari-
ant. Both momentum and energy are conserved. The
interactions are short ranged. The canonical distribution
function is stationary under the Hamiltonian dynamics.
While cellular automata models can be constructed
that have all these properties, for very simple forms of
the energy or Hamiltonian we were not able to construct
a model that had all these properties for the type of in-
teractions described above. (In particular, the hard-core
part of the interaction proved to be a stumbling block.)
Instead we constructed a model that was consistent with
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the complicated interactions and that preserved several
but not all of these dynamical features.

The motion is a Markov process governed by a set of
transition probabilities W,;, defined so that W, is the
probability that the system will be in state a at time
step n + 1 given that it is in state b at time step n.
The transition probabilities are all non-negative and are
normalized in the usual way,

> Wap=1 forallb . (18)
a

For any state a, the corresponding time-reversed state
T(a) will be defined as the state in which the particles
have the same positions as in a but have momenta that
are the negative of the momenta in a. Thus, T is a one-
to-one mapping of phase space onto itself. Time-reversal
symmetry of the model involves two conditions: one for
the equilibrium distribution and one for the dynamics.
We demand that the equilibrium distribution satisfy

P;d=Ppl,) foralla.

This is clearly satisfied by Eq. (16). We also demand the
following condition on the transition probabilities:

WabP;q = WT(b)T(a)P;*((la) foralla and b . (19)

This is a generalization of the microscopic reversibility
condition of mechanics. It will play the same role in the
current theory as the detailed balance condition plays in
a discussion of Monte Carlo simulation of Markov pro-
cesses.

From the generalized microscopic reversibility relation-
ship, Eq. (19), and the normalization condition, Eq. (18),
it can easily be shown that

Z WapPy? = P39 foralla . (20)
b

This implies that the dynamics of the model when ap-
plied to a canonical distribution of states preserves the
canonical distribution, or, in the language of the theory
of Markov processes, the canonical distribution is a sta-
tionary distribution for the process. We shall refer to
Eq. (20) as the stationarity condition.

The transition probabilities were constructed to sat-
isfy Egs. (18), (19), and hence (20). The resulting model
could be regarded as a generalization of traditional Monte
Carlo models by the introduction of momentum degrees
of freedom. Alternatively, it could be regarded as a sim-
plification of continuous mechanics to a discrete process
that preserves some of the important features of real dy-
namics.

The following is a description of the algorithm for the
process: In each time step we randomly pick one particle
(say particle i) and decide randomly whether to try to
move it or to try to make it suffer a binary collision. The
probability associated with each of these two possibilities
is 0.5. If we decide to try a move we move particle ¢ in the
direction of its velocity by one lattice spacing. As in the
standard Metropolis algorithm, if this move would lead
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to a decrease in the potential energy of the system, then
the move is definitely accepted. If the move would lead
to an increase in the potential energy, then the move is
accepted with probability exp(—AE/kgT), where AE is
the potential-energy increase. In either case, if the move
is accepted, the final state of the system is the state with
particle ¢ moved and with its momentum unchanged and
all other particles unaffected. If the move is rejected,
then the final state of the system is one in which parti-
cle i is unmoved but its velocity is the negative of what
it was in the initial state and all other particles are un-
affected. If we decide to try to make it suffer a binary
collision, we count the number of particles that are sec-
ond, third, or fourth nearest neighbors of particle 7. If
we find none, then no collision occurs and the final state
is the same as the initial state. If we find at least one
neighbor we choose one of them at random (say particle
j). If the following three conditions are met—(1) parti-
cle j is a second nearest neighbor of particle ¢, (2) the
velocities of the two particles point in opposite direction,
and (3) the dot product of the relative position r;; and
relative velocity v;; is negative—then both velocities are
rotated by 90° in the plane spanned by r;; and v;; such
that both velocities point away from the other particle.
It is easy to see that this rotation is unique. We call this
a “center-edge” collision because particle j is on an edge
of a cube centered at particle i. If one or more of the
above conditions are violated, the velocities of particles 4
and j are interchanged. Thus, if a collision is attempted,
the final state is either the same as the initial state (if
the particle chosen for the collision has no second, third,
or fourth neighbors, or if the two particles in the collision
have the same momentum in the initial state) or it dif-
fers from the initial state only in the velocities of the two
particles ¢ and j, all the positions of all the particles and
the velocities of all the other particles being the same as
in the initial state.

This algorithm has four important features that are
consistent with normal dynamics in fluids. (1) A par-
ticle can move only in the direction of its momentum.
(2) Collisions between pairs of particles can take place
only if they are a short distance apart. (3) The collisions
conserve momentum. (4) The transition probabilities are
consistent with the generalized microscopic reversibility
condition, Eq. (19), and hence the stationarity condi-
tion, Eq. (20). The first three features are easily demon-
strated. Demonstration of the fourth is straightforward
but tedious.

This algorithm also has some unphysical features (be-
sides the discretization of space, momentum, and time).
(1) The dynamics does not conserve momentum, because
an unsuccessful move leads to a reversal of the momen-
tum of one particle. Such velocity reversals (or a similar
feature) must be incorporated in the model to ensure
satisfaction of the generalized microscopic reversibility
condition. We tried to construct a model that conserved
momentum completely and that had hard-core interac-
tions, but we were unsuccessful. We strongly suspect,
but we cannot prove, that it is impossible to construct
a model, of the type discussed here, with both hard-core
interactions and momentum conservation. (2) A binary
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collision between two particles is possible even if they
are moving away from one another, i.e., if the dot prod-
uct of their relative velocity and relative position is posi-
tive. We were not successful in devising a more physically
reasonable binary collision algorithm that was consistent
with generalized microscopic reversibility. (3) The dy-
namics does not conserve energy. Under conditions in
which the motion is ergodic, long-time averages of prop-
erties correspond to canonical, rather than microcanoni-
cal, ensemble averages.

Some of the details of the dynamics were chosen to
avoid the creation of unphysical constants of motion.
The physical motivation for having binary collisions in
the model is clear, but we note that in the absence of
the binary collisions, the momentum reversals associated
with the single-particle attempted moves would not be
adequate to equilibrate the system. In particular, each
particle would be confined to the line defined by its ini-
tial position and the direction of its initial velocity. The
center-edge collisions were introduced for a similar rea-
son. If all binary collisions merely interchanged the ve-
locities of the two particles, there would be six macro-
scopic conserved quantities, namely the total number of
particles moving in each of the six directions would be
conserved. Even introduction of the velocity reversals
would still leave three conserved quantities, the number
of particles moving in the £, +y, and +2z directions.

We performed calculations using this model to obtain
equilibrium thermodynamic and structural properties as
well as equilibrium time correlation functions of inter-
est. All simulations were performed on a cubic system of
length [ = 26 under periodic boundary conditions. The
number of A particles was 560 and that of B particles was
240. The length of the runs of the simulations was be-
tween 10° steps per particle (SPP) for high temperatures
and 107 SPP for low temperatures. In all cases the length
of the runs during which equilibrium averages were cal-
culated were between ten and hundred times longer than
those of typical relaxation times, and the same is true for
the length of our equilibration runs. This ensures that we
really observe equilibrium quantities, a fact we consider
very important for sensitive tests of MCT since this is an
equilibrium theory.

Note that for a simulation with a duration of two steps
per particle, each particle has on the average one op-
portunity either to move a distance equal to the typical
interparticle distance or to suffer a velocity reversing col-
lision because of the inability to move in the direction
indicated by its velocity. For a monatomic liquid at high
density, this might correspond roughly to the time for
the velocity autocorrelation to change sign. This is ap-
proximately 0.2 ps for a Lennard-Jones model of argon.
Thus 1 SPP is roughly equivalent to 0.1 ps. It follows
that the runs we performed at the lowest temperatures
correspond roughly to simulations with a duration of 1
us. These are extremely long compared to those typ-
ically performed for molecular-dynamics simulations of
supercooled liquids.

We note that the equilibrium distribution of momenta
is trivial, i.e., the momentum of each particle is statis-
tically independent of all other momenta and of the po-
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sitions of all the particles. Moreover, each of the six
momenta are equally likely for any particle. The distri-
bution in configuration space is the same as that for a tra-
ditional lattice-gas model with the same potential-energy
function. Thus, in principle, the equilibrium distribution
in phase space could be obtained from normal Metropo-
lis Monte Carlo calculations in configuration space and
a random assignment of momenta to the particles. Since
Metropolis Monte Carlo (MC) calculations are numeri-
cally considerably faster than the phase-space dynamics,
we have used it for equilibration and even in the produc-
tion runs. This was done in the following way. When we
were computing time correlation functions we used the
dynamics specified above, but after a certain number of
time steps we switched to the Metropolis MC dynamics
(for which no time correlation functions were computed)
as it can be expected that for this kind of motion the
propagation of the system in phase space is faster. Then
we switched back to dynamics to continue the collection
of data for the calculation of the time correlation func-
tions. The ratio of the number of time steps used for
dynamics and for Metropolis MC varied between 1 (i.e.,
only dynamics) and 0.01 (mainly MC) and depended on
the ratio of the size of the window for which the time
correlation functions were computed to the total length
of the run.

From the above description of our algorithm it is clear
that we need many random numbers. We generated these
with a random number generator proposed recently by
Marsaglia and Zaman that has been proven to be ex-
tremely reliable and very fast [36].

IV. RESULTS

In this section we present the results of our simulation.
Section IV A deals with time-independent quantities such
as the total energy of the system and the diffusion con-
stant. In Sec. IV B we offer our findings about one type
of correlation function and the corresponding intermedi-
ate scattering function and susceptibility. Section IV C
is devoted to a second type of correlation function to in-
vestigate some predictions of MCT we were not able to
test with the first type of correlation function.

A. Time-independent quantities

Figure 1 shows the total energy per particle eo as
a function of temperature. As already mentioned in
Sec. III, the ground-state configurations of the system
for low densities will consist of many two-dimensional
crystallites, and it is easy to show that at the density
considered here the expression for the ground-state en-
ergy emin given in Sec. III applies. In the figure, the
horizontal axis is at the height of emin, which in our case
is —1.2. Although the energies accessible to our simu-
lations are still quite a bit larger than emin, it seems as
if an extrapolation of egot(T) to lower temperatures hits
the temperature axis at a nonzero value of T', which we
estimate to be approximately 0.3. This value is obtained
from fitting the low-temperature data with a power law
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FIG. 1. Temperature dependence of etot, the total energy
per particle. The solid line is a power-law fit (see text) with
exponent 0.27 and a critical temperature 0.30. The minimum
energy of the system is —1.2.

etot(T) = —1.2 4+ A(T — Te)"e. This fit is included in the
figure as well. However, because there is no theoretical
basis for this type of fitting function, the importance of
the exact value of T, should not be overemphasized since
it will depend on the type of fit we have made. Thus our
main point is that there exists a nonzero temperature at
which the total energy might seem to behave in a singu-
lar way, although we know of course that this singularity
is only an apparent one.

Figure 2 shows the self-diffusion constants D4 and Dp,
for particles A and B, respectively, in an Arrhenius plot.
These constants were calculated by computing the square
of the net distance traveled by a particle as a function
of time and by extracting the slope of the linear behav-
ior of this function for long times. From the figure we
see that the dynamical behavior of A and B particles is
quite different. Although at high temperatures the values
of D4 and Dp are very similar (at infinite high temper-
ature they are exactly the same) the behavior of the two
curves at low temperatures is very different. Whereas
the diffusion constant for A particles levels off within the
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FIG. 2. Arrhenius plot of the diffusion constant D4 and

Dp for A (triangles) and B particles (squares), respectively.
Solid line: power-law fit with exponent v = 1.1 and 7, = 0.30.
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numerical accuracy, Dp decreases rapidly. We postpone
for the moment the explanation for this difference until
Sec. IVB1 since we will present there further evidence
which helps clarify this phenomenon. Since MCT pre-
dicts a power-law singularity for the diffusion constant
in the vicinity of T, [see Eq. (7)] we fit Dp with such a
law. The best fit we found is shown in Fig. 2 as well.
For this fit we have obtained a critical temperature 7, of
0.30 and a critical exponent «y of 1.1. Note that, although
this value of v is compatible with MCT (i.e., it is larger
than 1.0), it is surprisingly small compared with values
reported previously from other simulations [24, 25] and
experiments [14-16], which are larger than 1.4. We will
come back to this point again in Sec. V of this paper.

B. Time-dependent quantities

1. The van Hove function

Many of the recent computer simulations investigat-
ing dynamical properties of liquids have focused on the
behavior of the van Hove function G(r,t) defined by

1 N N
G(r,t) = NZZ«S(r—m(O) +1;(1))) (21)

i=1j=1

and its self part G,(r,t), which is also called the tagged-
particle autocorrelation function, in which only the diag-
onal terms i = j in (21) are taken into account. r;(t) is
the position of particle ¢ at time ¢. For isotropic systems
G(r,t) and G,(r,t) will depend only on the magnitude
of r, r = |r|, thus allowing the average over the angular
part of the argument to be performed. For a lattice-gas
system this is not possible and we therefore introduced a
quantity Gs1(r,t):

Ng
G ) = g3 2 S (eI O-rEOD) -

a i=1

(22)

where r¢ is the o component of the position of particle
i, 8 € {A,B}, and the sum over i on the right-hand
side goes only over particles of type 8. Note that for
notational convenience we will suppress the 3 dependence
in future references to this function. Thus Gy (r,t) +1/1
is the probability of finding at time t a particle r planes
away from the plane it started in at time zero. To simplify
the analysis of the data we have subtracted off the long
time value 1/ of this probability so that G,i(r,t) will
decay to zero.

We also defined an analogous quantity related to the
total van Hove function (i.e., including the cross terms).
However, the statistics for this quantity were far worse
than those for Gg1, and since no useful tests of MCT
would have been possible, the calculation was abandoned.

Figures 3 and 4 show the typical behavior of G,1(r,t)
for A and B particles for different . All times given in
these and the subsequent figures are reported in units of
SPP. The dots are the actual data points and the lines are
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FIG. 3. Tagged-particle autocorrelation function Gs1(r,t)
for r = 0 and temperatures 0.35, 0.37, 0.4, 0.44, 0.5, 0.7, 1.0,
2.0, 5.0 (from top to bottom). Connecting lines are only a
guide to the eye. (a) A particles, (b) B particles.

just a guide for the eye. For clarity we will leave out the
dots in most of the later graphs. For computational effi-
ciency we calculated the correlation function for different
time windows, each having a width of one to two decades
in time and sampling a different part of phase space. The
fact that curves stemming from different windows almost
coincide at those times where the windows overlap gives
an estimate for the accuracy of the data. Figure 3 shows
Gs1(r,t) for r = 0 at all temperatures we have inves-
tigated. As for the case of the diffusion constants, we
also see here that the dynamical behavior for A and B
particles at low temperatures is quite different. Whereas
it takes G41(0,t) for the A particles about 200 SPP to
decay to half of its value, it takes the same quantity for
the B particles about 3000 SPP to do so. Also note the
extremely slow and highly nonexponential decay of these
functions at low temperatures, especially for the B par-
ticles. At the lowest temperature it takes G,1(0,t) 10 to
100 times longer to fall from 50% to 10% of its starting
value than it takes it to fall from 100% to 50%. This
shows the importance of making very long runs when
the correlation times are huge and the relaxation is non-
exponential. This should be taken into account when
evaluating molecular-dynamics simulation data for other
systems. When correlation functions decay to only half
of their initial value within half of the time of the whole
run, the danger of observing purely nonequilibrium ef-
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FIG. 4. Tagged-particle autocorrelation function G,1(r,t)
for r = 0,1,2,...,13 for different temperatures. (a)—(c) A
particles, (d) B particles. (a) T = 5.0, (b) T = 0.7, (c)
T = 0.35, (d) T = 0.35.

fects could be very large. A more quantitative analysis
of our data will be given below.

Figures 4(a)-4(c) show Gs1(r,t) for A particles on an
extended scale so that the structure of the curves for
r > 0 becomes visible. Note that the typical values for
these correlation functions are about an order of magni-
tude smaller than those of G41(0,t). At high temperature
[Fig. 4(a)] the only feature of Gs1(r,t) for r > 0 is a peak
whose position moves slowly to larger times for increas-
ing 7. Thus this looks like the behavior expected from a
diffusive motion. Lowering the temperature to 0.7 makes
the position of each of these peaks move to larger times
[see Fig. 4(b)]. This is also in accordance with diffu-
sion behavior. However, at this temperature we also can
observe the appearance of a shoulder at times around
3-7 SPP. By lowering the temperature further to 0.35
[Fig. 4(c)] we see that the shoulder starts to evolve into
a secondary peak. .

For B particles the picture looks a bit different. Al-
though the peak at long times is present [see Fig. 4(d)],
it is shifted to larger times compared to the main peak
for A particles at the same temperature. This could have
been anticipated since we saw that the diffusion constant
for B particles is smaller than that for A particles, thus
showing that the relaxation time for B particles is larger
than that for A particles. The more striking fact is that
the size of the secondary peak for the B particles is so
small that it is barely visible even at the lowest tempera-
tures studied, although a careful analysis of the data has
shown that it is really present. Thus it seems that at low
temperature we have two different kinds of motions for
the A particles: a slow one, generating the main peak,
and a fast one, generating the secondary peak. For B
particles only the slow motion is relevant. We think this
behavior can be explained in terms of the relative abun-
dance of A and B particles. Since we have significantly
fewer B particles than A particles at low temperatures,
almost all B particles will be surrounded by A particles,
making their motion very difficult since they have to over-
come the attractive A-B interaction trying to keep them
in place. The same is true of course for those A particles
which are surrounded by B particles, but since the A par-
ticles are more abundant some of them will be bound to
the B particles only weakly, i.e., by only one bond, or not
at all. Thus they can move around much more easily. We
think that these “fast” moving particles give rise to the
small secondary peak at low temperatures and are also
responsible for the leveling off of the diffusion constant
for the A particles at these temperatures.

Let us dwell on this a little bit more. From Fig. 2
we recognize that the diffusion constant of the A parti-
cles at low temperatures is about one-third of its value
at high temperatures. Let us assume that the dynamical
behavior of the fast moving A particles at low temper-
atures is similar to that of all the A particles at high
temperatures. From this we can conclude that at low
temperatures about one-third of the A particles are fast
ones and two-thirds are slow ones. Another way to un-
derstand these numbers is to remember that 30% of all
particles are of type B. As mentioned in Sec. III, at low
temperatures the A and B particles form small crystal-
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lites with a composition that is higher in A particles than
in B particles, since the former constitute the bound-
ary of the crystallite. It is therefore not unreasonable
to find that two-thirds of the A particles are bound to
crystallites and can therefore only move slowly. Further
support for this point of view can be found in Fig. 3.
From Fig. 3(a) (A particles) we recognize that for high
temperatures G41(0,t) has decayed from 1 at ¢ = 0 to al-
most zero at t ~ 102, whereas at low temperatures it has
decayed only to about 0.6. Hence, for ¢t > 102 the fast
A particles do not contribute to G,1(0,t) significantly.
Thus, if we assume that at low temperatures the dynam-
ics of the slow A particles and the dynamics of the B
particles are similar, we would predict that the G,1(0,t)
for the B particles at ¢ ~ 102 should be about 0.6/(2/3)
and this is indeed what is found [see Fig. 3(b)]. Therefore
we have evidence that, despite the fact that the diffusion
constant of the A and B particles at low temperatures are
very different, the dynamics of about two-thirds of the A
particles is similar to the dynamics of the B particles.
This dynamical behavior of the two kinds of particles is
reminiscent to the one observed in superionic glass form-
ers. In these systems conducting particles of high mobil-
ity, which are important for the conducting modes, move
in an almost rigid matrix of particles with a low mobil-
ity. The low-mobility particles are relevant for the relax-
ation modes. However, unlike in these kinds of materi-
als, in our system this matrix is composed of both kinds
of particles. Therefore both A and B particles are im-
portant for the structural relaxation and their dynamics
is strongly coupled. It consequently makes sense to test
MCT on correlators for A particles as well as B particles,
provided one considers only correlators such as G (r,t)
whose long-time behavior is governed only by the dy-
namics of the slow particles and provided one restricts
attention to long times (or small frequencies) and fixed
r (or fixed wave vector k). However, if one would inves-
tigate a correlator which measures only the behavior of
the fast A particles, one would probably find a behavior
similar to the conducting modes in superionic glass for-
mers and mode-coupling theory would not be expected
to apply. An example for such a correlator would be the
limiting zero wave vector and zero-frequency behavior of
the Fourier transform of G (r,t) for A particles, which is
related to the self-diffusion coefficient of the A particles.

2. The intermediate scattering function

Computing the space Fourier transform of G,1(r,t) we
find the intermediate self scattering function Fyq(r,t):
Fsl(kyt) - —G31(0,t) - (_1)stl(l/27t)

/2

+2 Z Gs1(r,t) cos(ggr)
r=0

2
with qk=7”k . (23)

Since we have the symmetries Fg1(k+1,t) = Fs1(k,t) and
Fy1(k,t) = Fs1(l — k, t) the intermediate scattering func-
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FIG. 5. Intermediate self-scattering function Fy1(k,t) for
A particles and k = 1,2,...,13. (a) T'= 5.0, (b) T = 0.7, (c)
T =04, (d) T = 0.35.
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tion is completely determined when we know its value
for k = 0,...,l/2. Note that, because of the sum rule
Ef-:o G1(r,t) = 0, we have Fy;(0,t) = O for all times.
Figure 5 shows Fji(k,t) for the A particles for four
different temperatures. We see that for all temperatures
Fy1(k,t) decays more slowly the smaller k is. For large
values of k the curves seem to approach a master curve,
and this behavior is more and more pronounced the lower
the temperature is. Also this collapse is more pronounced
for large times, and at the lowest temperature [Fig. 5(d)]
the time interval in which all curves follow the master
curve stretches over more than two decades. Thus at very
low temperatures (i.e., those even lower than the lowest
one in this simulation) we expect that the relaxation be-
havior of Fy;(k,t) is independent of k for all times. We
find that this master curve is very well approximated by
the spatial Fourier transform of the function given by
Gy1(r,t)6r,0 where 6 is the Kronecker delta. We there-
fore can conclude that the main relaxation behavior of
Fg1(k,t) is given by the decay of G41(0,t). Similar results
hold for the B particles. MCT predicts that 3 relaxation
is, apart from an amplitude factor A, independent of the
quantity studied [see Eq. (9)]. Thus if we assume that in
our case h is not, or is only weakly, dependent on k&, MCT
can rationalize this kind of relaxation behavior for our
system at intermediate times. However, MCT makes no
prediction that the ¢ relaxation should also be indepen-
dent of the quantity under investigation, and therefore

1.0
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FIG. 6.

Intermediate self-scattering function Fyi(k,t) for
A particles and all temperatures investigated (see Fig. 3). (a)
k=1, (b) k=13.
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our finding is surprising, although not in contradiction
with the theory.

Figure 6 shows Fy; (k,t) for kK = 1 and 13 for the A par-
ticles at all temperatures we investigated. Although both
sets of curves show a dependence on temperature, the one
for the large value of & is much stronger. Of course this is
just another manifestation of the previously discussed re-
sult that for low temperatures curves for different values
of k approach a master curve.

Figure 7 shows Fyi(k,t) for the B particles, k = 13,
and all the temperatures investigated. Curves for dif-
ferent values of k are very similar in form. We have
investigated the behavior of the intermediate scattering
function for a fixed temperature and different values of &
and have found that at low temperatures the curves for
the various k follow a master curve just as we found for
the A particles. A comparison between Figs. 7 and 6(b)
shows how much slower the relaxation for the B particles
is at low temperatures. We also note that the shape of
the curves for short times is different. For the A particles
Fy1(k,t) has an appreciable slope at short times even for
the lowest temperature whereas Fj;(k,t) for the B parti-
cles has a slope close to zero at these temperatures. This
difference is consistent with the analysis offered to ex-
plain the appearance of an additional peak in Gyi(r,t)
for the A particles, namely that at low temperatures we
still have a few A particles which can move around quite
easily whereas almost all B particles are immobile.

Figures 6 and 7 also demonstrate that even at low tem-
peratures the time-temperature superposition principle
predicted by MCT is clearly violated since the shape of
the curves at long times changes significantly as the tem-
perature is changed. Thus it can be expected that the
predictions of MCT for the properties of the a peak will
not be consistent with the data.

So far we have not made any statements about the
functional form of the relaxation curves. We have tried to
make fits with a KWW function, but have found that this
functional form does not fit the data well even for long
times. Thus this is an additional discrepancy between our
results and the predictions of MCT. We have also tried to
fit the long-time behavior of the relaxation curves with
a power law of the form Fyi(k,t) = A/t®, but this kind

FIG. 7. Intermediate self-scattering function Fy1(k,t) vs
time for B particles for k = 13 and all temperatures investi-
gated (see Fig. 3).
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of fit was not convincing either. We will come back to
this point later when we discuss the dynamic structure
factor.

Since we were unable to fit the relaxation curves with
a simple functional form, the assignment of a relaxation
time 7(T") is somewhat arbitrary. Note that the usual
definition for the relaxation time, the time for which the
correlator has decayed to e~! of its initial value, is in
our case arbitrary too. This definition is only appropi-
ate if the correlators for different temperatures can be
represented by a function C(t/7(T")) with a temperature
independent function C, i.e., if the time-temperature su-
perposition principle holds. If, for example, the corre-
lators develop a long-time tail at low temperatures as
is the case here, a relaxation time defined in the above-
mentioned way will suggest a relaxation behavior which
is too fast. We therefore have chosen to define the mean
relaxation time 7 to be the area under the curve. Fig-
ure 8 shows these relaxation times for the different values
of k in an Arrhenius plot. For clarity we have multiplied
the curves for the B particles (upper set of curves) by
a factor of 10. Again we see the strong dependence of
74 and 7 on k for high temperatures and that this de-
pendence almost vanishes at low temperatures. We also
recognize the strong non-Arrhenius behavior of 74 and
TB.

Since MCT predicts a power-law divergence for the re-
laxation times in the vicinity of T, [see Eq. (4)], we have
tried to fit the low-temperature data with such a law. In
doing this we have focused on the relaxation times for
large values of k. We find that for temperatures below
approximately 0.5, 74 and 7p can be fit very well by this
type of law, and the corresponding fits are included in
Fig. 8 as well. For the critical temperature T, we find
0.327 and 0.320 for the A and B particles, respectively.
The associated critical exponents 7 are given by 1.99 and

20 25 30
T—1

00 05 10 15

FIG. 8. Relaxation times 74 and 75 for A and B particles,
respectively, and k = 1,2,...,13. The upper set of curves are
for the B particles and for clarity we plot 10 x 7. The lower
set of curves are for the A particles. Within each set, curves
correspond to k = 1,2,...,13 (from top to bottom). The
solid curves are power-law fits to the low-temperature data.
T. = 0.327, v = 1.99 for A particles and T, = 0.320, v = 2.36
for B particles.
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2.36. These two values for T, compare well with the T,
determined from the diffusion constant for the B parti-
cles (which was 0.30). The values for the critical expo-
nent v do not agree as well. However, we have noticed
that, whereas T, is not very sensitive to the kind of fit
we make (e.g., what range in temperature), v seems to
be much more sensitive and is therefore much less well
determined. Therefore it is difficult to decide whether
the two exponents are actually different.

We have also tried to fit 74 and 75 by the Béssler
law 7 ~ exp(A/T?) [37] and by the widely used Vogel-
Fulcher law 7 ~ exp[A/(T — Tyr)]. The former did not
give a satisfying fit at all. Although the latter one fit the
low-temperature data with comparable quality to that
of the power law, the lack of a good microscopic theory
supporting such a law makes it less appealing than the
power law [10].

8. The dynamic structure factor

Since certain types of time dependence, such as that
of the von Schweidler law, are much easier to identify in
the frequency domain than in the time domain we have
computed the dynamic structure factor S, (k,w), which
is the cosine transform of Fyi(k,t), for k = 1,4,7,10,
and 13 for the A particles and for K = 13 for the B
particles. To do this we have smoothed our data a bit
by means of the method of a spline under tension [38]
and performed a fast Fourier transform to compute the
cosine transform. Again we find that at low temperatures
curves for different values of k approach a master curve.
This is of course expected since the same behavior was
observed in the time domain. More interesting are plots
as shown in Fig. 9 where S;;(k,w) for the A particles,
k =1 and k = 13, and all the temperatures investigated
are presented (corresponding plots for k£ = 4, 7, and 10
are very similar to the one for k = 13).

Several features can be recognized. For high temper-
atures and k > 1 S,1(k,w) goes to a constant for small
w. This is to be expected because if Fy1(k,t) decays ex-
ponentially then Sg;(k,w) is given by a Lorentzian, i.e.,
Ss1(k,w) ~ 1/(1 + w?). However, if the temperature is
lowered, the point where S,1(k,w) becomes independent
of w shifts to smaller and smaller frequencies, and the
curves seem to approach a master curve which appears
to be a straight line for 107% < w < 1073, i.e., S,1(k,w) is
a power law in this range of frequency. (Note that this is
a different kind of master curve than the one discussed in
connection with Fig. 5. There curves for different values
of k at the same temperature collapsed at long times onto
a master curve, whereas here curves corresponding to the
same k and different temperatures show this behavior.)
For intermediate w (i.e., 1072 < w < 10°) another power
law is observed, but here the curves corresponding to dif-
ferent temperatures do not collapse onto a master curve.
Whereas the slope of the curves is weakly dependent on
temperature for £k = 1, they seem to be independent of
it for £ > 1. Since it is easier to discuss this feature with
the help of the susceptibility we will postpone this dis-
cussion to Sec. IVB4 and focus now on the power-law
behavior for small w.
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FIG.9. Dynamic structure factor S,1(k,w) for A particles
for all temperatures investigated (see Fig. 3). (a) k = 1, (b)
k= 13.

We have already seen that at low temperatures the
long-time behavior of the relaxation curves becomes in-
dependent of k. We therefore can conclude from Fig. 9
that at these temperatures there is a frequency window
at small frequencies in which all curves collapse onto
each other. Since the upper boundary of this window
is only relatively weakly dependent on temperature and
the lower boundary shifts quickly to smaller frequencies
when the temperature is lowered, the width of the win-
dow increases with decreasing temperature. As can be
seen from Fig. 9(b) this width has already reached more
than two decades in frequency for the lowest temperature
investigated here. For the slope we obtain —0.745. This
corresponds to a power law in the time domain with an
exponent —0.255. The reason we were not able to fit the
long-time behavior of Fs;(k,t) with a power law is the
presence of an offset P, i.e.,

Fo(k,t) = P+ téé with 6 =0.255 (24)
as a nonzero P will lead to curved lines in a logt-
logF,1 plot. In Fig. 10 we show the relative residuals
R(k,T) = [Fs1(k,t) — P — A/t®]/Fs1(k,t) for T = 0.35
and where A is a k-independent fit parameter. That the
relative residuals are so small demonstrates the numeri-
cal significance of the fit. We also can see from this plot
that Eq. (24) holds within a few percent in the time range
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FIG. 10. Relative residuals of the power-law fit to Fs1(k,t)
for A particles for long times and k = 4, 7, 10, and 13 (from
top to bottom). 7" = 0.35.

3 x 102 < t < 3 x 10%. Surprisingly the fit yields a value
for P of about —0.088, i.e., it is negative. This means
that Eq. (24) cannot hold for arbitrarily long times since
the right-hand side would become negative. We will come
back to this point in the discussion.

Because the relaxation behavior for the B particles is
slower than the one for the A particles, the frequency
region in which the power law holds, if it exists, is at so
small frequencies that it is barely visible in the frequency
window accessible to our simulations. Thus no definite
statement on the existence of a power law for the B par-
ticles can be made.

4. The dynamic susceptibility

Multiplying Ss;1(k,w) by w yields the imaginary part
X (k,w) of the dynamic susceptibility, which is shown
in Fig. 11 for the A particles, kK = 1, 7, and 13 and all
the temperatures investigated. There are two discernible
features. At frequencies w < 10~!, we clearly observe an
«a peak and we see that the two power laws mentioned
in the preceding subsection correspond to the high- and
low-frequency wings of the peak. In addition we see a
microscopic peak at frequencies w > 1071, although at
high temperatures it is not well developed since it is hid-
den by the a peak. Only at lower temperatures, where
the o peak has moved to smaller frequencies, does the
microscopic peak become readily visible. We see that,
although its position is independent of temperature, it
shifts to larger frequencies when k is increased, a behav-
ior expected from the kinetic theory of fluids [3]. Also
note that the form of the microscopic peak differs from
the one found for example in Cag 4Koe(INO3)1.4 by Li
et al. [20] in that our peak is less sharp. This might be
due to the fact that our hard-core interactions lead to
a strong anharmonicity and thus to a broad microscopic
peak. However, Li et al. found for Salol a spectrum
which is very similar to the one presented here [21].

From Fig. 11 we recognize that in the region of the
high-frequency wing of the a peak x%; (w) shows a power-
law behavior. This is the corresponding power law to
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the one observed for S,1(k,w) at intermediate frequen-
cies and can be identified with the von Schweidler law
predicted by MCT as part of the 8 relaxation. We see
that for large values of k the exponent —b (i.e., the slope
in the curves) for this power law is independent of tem-
perature, which is also in accordance with MCT. For b we
find a value of 0.50 & 0.04. For k = 1 the slopes depend
weakly on temperature, but as we have already seen be-
fore, the relaxation behavior for quantities with small &
do not yet fall onto the master curves for short and in-
termediate times at the temperatures investigated here.
Thus it might be that at even lower temperatures the
values of the slopes will approach approximately —0.5.
In addition to the von Schweidler law MCT also pre-
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FIG. 11. Susceptibility x%;(k,w) for A particles for all
temperatures investigated (see Fig. 3). (a) k=1, (b) k=7,
(c) k=13.
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dicts a second power law in the (-relaxation regime
which falls between the minimum in the susceptibility
and the maximum associated with the microscopic peak
[see Eq. (10)]. Since MCT connects the two exponents
a and b via Eq. (6), we can conclude that a for our sys-
tem would be 0.285 if MCT were correct for the system.
Figure 11 shows that even at the lowest temperatures
the minimum in x%;(w) is not well developed yet and
therefore we are not able to observe the a power law.
MCT is able to explain why it is difficult to observe the
a power law for the tagged-particle correlator. It can be
shown that the Lamb-Mossbauer factor fs; [see Eq. (9)]
approaches unity for small k (see, e.g., Fig. 2 in [6]) and
therefore that the observation of the power law becomes
difficult [39]. This is also the reason why we do not have
a well-developed minimum in x’; (k,w). Thus at the mo-
ment we are not able to test the laws given in Egs. (13)
and (14) and therefore are unable to use those relations
to make an independent determination of the exponent
a.

Since the B particles are relaxing even slower than
the A particles (Figs. 6 and 7), one expects the Lamb-
Mossbauer factor for the B particles to be even larger
than the one for the A particles. Consequently, the ob-
servation of the a power law in the 3 relaxation should be
even more difficult. Also, because of the slower relaxation
of the B particles, the position of the o peak is expected
to be shifted to smaller frequencies relative to wpayx for
the A particles. This is indeed what is observed in Fig. 12
where we have plotted the susceptibility x”; (13, w) for the
B particles [compare with the corresponding Fig. 11(c)
for the A particles]. However, we clearly see that the
high frequency wing of the peak shows the von Schwei-
dler law. Since the o peak is shifted to smaller frequen-
cies and the microscopic peak is so much smaller than
the one for the A particles, the range for which the von
Schweidler law holds is quite a bit larger than the cor-
responding one for the A particles. Again we find that
the slope of the curves, i.e., the von Schweidler exponent
—b, is independent of temperature, and our best estimate
for b is 0.73 £ 0.03. This has to be compared with the
value 0.5 found for b for the A particles. This result is in
contradiction to MCT since the theory predicts that for
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FIG. 12. Susceptibility x4, (k,w) for B particles and k =
13 for all temperatures investigated (see Fig. 3).
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a given system the values of the a and b exponents in the
[ relaxation regime are independent of the quantity.

The usual way to extract the Lamb-Méssbauer factor
fs1 from the intermediate scattering function Fj; is to
look for a plateau region and define f;1 to be the height
of this plateau [28,29]. A second method is to use the am-
plitude of a KWW fit for long times as an estimate for fg;
[30]. In our case we cannot make use of either of these two
possibilities since we neither see a plateau nor can make
a KWW fit. Instead, we used another method which
allows us to determine both the Lamb-Mé&ssbauer fac-
tor and the range of validity for the von Schweidler law.
We have taken the von Schweidler exponent b obtained
from the fits to the susceptibility and computed the resid-
ual Q(k,t) = Fs1(k,t) + B(k,T)t*. The von Schweidler
law holds in the region where Q(k,t) shows a plateau.
The coefficient B(k,T") can in principle be calculated
from the corresponding coefficient B(k,T) of the von
Schweidler law in frequency space. However, we have
noticed that we could increase the length of the plateau
by regarding B(k,T) as an adjustable parameter. The
difference between the best value obtained for B(k,T)
by this method and that obtained by a direct calcula-
tion from B(k,T) is a few percent for low temperatures
and about 10% at high temperatures. Figure 13 shows
the residuals for k¥ = 10 and the different temperatures.
Plots for k = 7 and 13 are qualitatively similar. Observe
that the Lamb-Mossbauer factor, which is the height of
the plateau, is obtained directly from this analysis. Also
we can easily read off from this plot the time range for
which the von Schweidler law holds since it is given by
the length of the plateau. Whereas for high temperatures
this range is only a few SSP (5 <t < 10), it extends over
about 25 SSP (15 < t < 40) at low temperatures. Thus
the time range at low temperature is comparable with
the time for which the factorization property implied by
Eq. (9) was found by Roux, Barrat, and Hansen to hold
for a binary soft sphere system and the time for which
Signorini, Barrat, and Klein found §-relaxation behavior
in a simulation of a molten salt model [25, 26].

In Fig. 14 we present the values for the Lamb-
Méssbauer factor fs1(k,T") as a function of temperature

Qlk,t)

FIG. 13. Difference Q(k,T) between F1(k,t) for A par-
ticles and von Schweidler law Bt® for different temperatures.

k = 10.

3295

1.01 4
'_

'~ 1.00
“%0.99
0.98 -
0.97 1
0.96

0.95 3 rrrrrrrererrreree
0.0 05 10

R RRRESEEES REES

15 20 25 3.0
T—1

FIG. 14. Value of the nonergodicity parameter fo1(k,T)
for k = 7 (circles), k = 10 (triangles), and k = 13 (squares)
for A particles. We plot inverse temperature to stretch the
scale at low temperatures.

for different values of k. Although the error for the data
points are relatively large (as can be recognized from the
scattering of the points), nevertheless we can observe two
trends. First we see that the values of f,;(k,T) decrease
with increasing k. This is in accord with MCT [6]. Sec-
ond, we observe that fs1(k,T) increases with increasing
temperature. This is in contrast with the behavior found
in the experiments known to us, which show above T
a decrease or leveling off of the nonergodicity parameter
with increasing temperature (see, e.g., [13, 15, 22]). We
do not know whether MCT is able to rationalize the be-
havior found by us since the results of the corresponding
calculations for the temperature dependence of the non-
ergodicity parameter are usually reported only to zeroth
order in €. At first glance it might seem surprising that
fs1 should increase with increasing temperature as this
seems to imply that the system relaxes less the higher
the temperature is. But one has to keep in mind the way
we determined fs1; it is just the value obtained from the
extrapolation of the power-law fit to time zero and a pri-
ori (i.e., without the help of MCT) nothing can be said

5 08 10 12

e e o

5 6
T

Prefactor B(k,T) of the von Schweidler law for
A particles for k = 7 (squares), k = 10 (triangles), and k = 13
(circles). Inset: B(k,T) at low temperatures with power-law
fit (solid line). T, = 0.26, v = 0.58.

FIG. 15.
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about the dependence of this value on temperature.

The fit of the von Schweidler power law to the suscep-
tibility at different temperatures provides an additional
method for extracting exponent a and the critical tem-
perature T.. From the Fourier transform of Egs. (9)
and (12) one easily finds that the prefactor B of the von
Schweidler law is proportional to e!/2*%/2¢. In Fig. 15
we plot B as a function of T for k = 7,10,13. The inset
shows the low-temperature part we have used to fit the
power law which is included in the graph as well. For the
critical temperature we obtain T, = 0.26 and as critical
exponent % + 2—';— = 0.58. However, both quantities are
subject to an error of about 10-15% as the individual
data points have appreciable errors bars. The value 0.26
for T, is about 20% lower than those obtained from the
diffusion constant and from the relaxation times but tak-
ing into account the relatively large errors this is not a
significant discrepancy. Using the value obtained above
for b, namely 0.5, the value of a is calculated to be 3.1.
Using Eq. (5) to compute a with v = 1.1, which we found
from the diffusion constant, we obtain a value for a of
5.0. Again, taking into account the error bars for a de-
termined from the coefficient of the von Schweidler law,
we do not think the discrepancy is significant, although
of course neither of the two values for a is compatible
with MCT, which predicts a to be less than 0.5.

We now turn our attention to the o peak. First we will
discuss the time-temperature superposition principle and
then comment on our findings about the a stretching.

We have already mentioned in the discussion of the
intermediate scattering function that for our model we
do not observe the time-temperature superposition prin-
ciple predicted by MCT. To show this more clearly we
plot the normalized susceptibility x%; (k,w) for £k = 13 in
Fig. 16. Corresponding plots for different values of k or
for the B particles look very similar. Normalization was
done with respect to the position wnax and the value of
X1 (k,w) at w = wmax. If the time-temperature superpo-
sition principle held, all the curves corresponding to dif-
ferent temperatures would collapse onto a single master
curve. The graph shows that this is not the case even for
temperatures as low as 0.5, a temperature which, as sug-
gested by our results presented above, seems to be quite
close to the critical temperature. However, if the previ-
ously presented analysis with the power-law behavior for
small frequencies for Sy1(k,w) is correct, one would ex-
pect that at very low temperatures the time-temperature
superposition principle will hold. The high-frequency
wing of the a peak corresponds to the von Schweidler
law whose exponent b was found to be independent of
temperature. The low-frequency wing of the peak obeys
the power law at low frequencies, which we think will
hold up to smaller and smaller frequencies if the tem-
perature is lowered and whose exponent we found to be
independent of temperature as well. Thus at low enough
temperatures both wings of the a peak will be given by
power laws with exponents independent of temperature
and therefore the time-temperature superposition prin-
ciple will hold. Havriliak and Negami have introduced
a functional form for fitting an a peak whose wings be-
have asymptotically as a power law [40]. They proposed
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FIG. 16.

Normalized susceptibility X&u;/Xmax for A par-
ticles vs normalized frequency (see text) for k = 13 at all
temperatures investigated (see Fig. 3). The dashed line is the
predicted behavior for a Debye relaxation.

x(z) x 1/[1 + (=iz7)*]® leading to power laws w® and
w=Y" at low and high frequencies, respectively. We have
tried this fitting function but have found that it is not
able to represent the form of our curves well since the
crossover region between the two power laws is too small
in our case.

Although we have not been able to fit the entire o peak
with a single fit function, we can still make some state-
ments about the shape of the peak. We have included
in Fig. 16 the curve that would be obtained from a pure
Debye relaxation. At all temperatures we observe that
the a peak is wider than the Debye peak. This is the so-
called « stretching which is predicted by MCT. For our
model we note that the full width at half maximum of the
peaks at low temperatures is increased by about a factor
of 10, and that at high temperatures the low-frequency
part of the wings follow a Debye law extremely well.

To test the critical behavior given by Eq. (4) we present
in Fig. 17 the position wmpax of the a peak as a function
of temperature for k = 4,7,10, and 13 for the A particles
(upper curves) and for k = 13 for the B particles (lowest
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FIG. 17. Position wmax(k,T') of the a-peak for A particles

and k = 4 (squares), k = 7 (triangles), k = 10 (circles), and
k = 13 (stars) and B particles for k = 13 (diamonds). Full
line: power-law fit with 7. = 0.30 and v = 1.7.
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curve). We see that the behavior of wp., for the A and
B particles is quite different. For the latter ones we find
that wmax is strongly non-Arrhenius and a power-law fit
(included in the figure as well) seems to work well at
low temperatures. For the critical temperature we find
T. = 0.30£0.2 and for the critical exponent v = 1.74-0.4.
Thus we find the behavior implied by Eq. (4). This is
probably not the case for the A particles. Although the
noise in the data is quite large, wyax seems to follow
an Arrhenius-like behavior. A power-law fit is possible
here too (T,=0.25, y=1.0), but taking into account the
noisiness of the data, we do not think that one should
give too much weight to these values.

A further quantity we investigated was x/,.., the value
of x¥;(k,w) for w = wmax. Although to our knowledge
MCT does not make any prediction about this quantity,
we found that it too shows a critical behavior. Figure 18
shows xi1,« for the A particles as a function of tempera-
ture for those values of k£ we investigated. Again it seems
that there is a singularity at a nonzero temperature. Mo-
tivated by our previous results we assumed for the sin-
gularity a power-law dependence xi .. « (T'—T,)4 and
the inset shows (x/...)'/74. This time the quality of the
data seems to be good enough to determine the critical
exponent and critical temperature quite precisely. We
find T, = 0.324 and v4 = 0.19. A similar behavior is
found for xi,. for the B particles for k = 13. We find
Te. = 0.33 £ 0.02 and v = 0.24 4+ 0.03. So far we do
not understand what the implication of this result is,
but we think it to be remarkable that the T, found in
this manner is close to the critical temperatures found
by other means. We are not aware of any experimental
result that shows a similar behavior. Likewise, to our
knowledge none of the solutions of schematic models in-
vestigated within the framework of MCT thus far shows
such a behavior [9, 10]. We will comment on this further
in the discussion.

C. Results for a different kind of relaxation function

Since the quantities investigated thus far have not al-
lowed us to investigate either the high-frequency part
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FIG. 18. Values of xi., for A particles as a function of

temperature and k = 1 (squares), k = 4 (triangles), k =
7 (circles), k = 10 (diamonds), and k = 13 (stars). Inset:
(Xthax)Y/74 for small temperatures. y4 = 0.19.
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of the [-relaxation regime or the minimum in the sus-
ceptibility we have investigated the correlation function
Gs2(r,t), which is defined as

Ng
Ggg)(r,t) = 5'117; ZZ(&(ri(O) —ri(t) —1é,)) — li3 ,

a i=1
(25)

where 8 € {A,B} and &, stands for the unit vector of the
lattice pointing in direction a. (Again we will drop in the
future the superscript 8 in Ggg).) Thus Gsa(r,t) +1/13
is the (un-normalized) probability of finding a particle at
time ¢ on one of the axes defined by the location of the
particle at time zero and at a distance of r lattice spacings
from its location at time zero. As in the definition of
G,1(r, t) we subtract 1/13 in (25) to make G,5(r,t) decay
to zero in the long-time limit. Proceeding now in the
same way as for G41(r,t) we can define an intermediate
self-scattering function Fs3(k,t). Since we do not have a
sum rule here as we did for G,1(r,t), the function does
not vanish for k£ = 0.

Figure 19 shows Fya(k,t) for k = 0,...,13 for the A
particles at T = 0.35. A comparison with Fig. 5(d) shows
that the collapse of the curves for different values of k
onto a master curve is much more pronounced than for
the Fy1(k,t) case. The time range for which this happens
now extends over more than three orders of magnitude
as opposed to two for Fyi(k,t). Also at approximately
10 SPP for large enough values of k a shoulder appears.
Though we will not present the plots here, we have also
looked at Fya(k,t) for the B particles. In this case we
found that the collapse onto a master curve is also more
pronounced for Fia(k,t) than for Fsi(k,t), but we did
not see any new feature appearing in Fyo(k,t) at short
times.

In Fig. 20 we show Fya(k,t) for the A particles for
k = 13 for all temperatures investigated. Now we can
see how the above-mentioned shoulder is formed at low
temperatures. If we compare this figure with Fig. 6(b)
we recognize that at low temperatures, apart from this
feature, there is no other significant difference in the re-
laxation behavior. In fact one finds that for times longer

FIG. 19. Intermediate self-scattering function Fi2(k,t) vs
time for A particles and T'= 0.35 for k =0,1,2,...,13.
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FIG. 20. Intermediate self scattering function Fs2(k,t) vs

time for A particles for k = 13 and all temperatures investi-
gated (see Fig. 3).

than approximately 3 x 10® SPP the relaxation curves for
F,; and those for Fyy are the same within the numerical
uncertainty. Similar plots for the B particles show that,
since no shoulder appears in Fso even at low tempera-
tures, there is no significant difference in the relaxation
behavior of Fy; and Fso for B particles. As in the case
for the A particles we find that for times larger than ap-
proximately 3 x 103 SPP the relaxation behavior for the
two quantities coincide within the numerical uncertainty.

The presence of a shoulder in Fs2(k,t) for the A parti-
cles is expected to lead to a well-developed minimum in
the susceptibility x4, (k,w). This is seen clearly in Fig. 21
where we have plotted x,(k,t) for k£ = 13. One can rec-
ognize that part of the wings of the minimum are more
or less straight lines (i.e., power laws). MCT identifies
the high- and low-frequency wings with the a power law
and the von Schweidler law, respectively. Unfortunately
these linear regions are very small and thus the extrac-
tion of an exponent is a bit questionable. To overcome
this type of difficulty, G6tze and Sjogren have proposed
the formula

X' (@) = [€['/2 [A@/wmin)® + Blomn/)] ,  (26)
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FIG. 21. Susceptibility xbz(k,w) for A particles and k =
13 for all temperatures investigated (see Fig. 3).
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which interpolates between the a power law and the von
Schweidler law [8]. Since function g_(f) in Eq. (9)
has no explicit temperature dependence, MCT implies
that if we scale the frequency by wmin, the minimum in
Xs2(k,w), and scale x5 (k,w) by xi2(k, wmin), the curves
for different temperatures should collapse onto a master
curve given by the Fourier transform of g_(£). We have
made such a rescaling, and in Fig. 22 we present the
scaled susceptibilities for those temperatures for which
we were able to identify the minimum in x/,(k,w), i.e.,
for T' < 0.5. We see that the scaling property predicted
by MCT seems to hold. Also included in the figure is
a fit to expression (26) (note that this function contains
effectively only four fit parameters: a, b, ||/ 2A/w;l;’n,
and |e|Y/2Buw? . ). For the exponents a and b we find 0.56
and 0.61, respectively. These two values are not compat-
ible with MCT as they violate Eq. (6) and the condition
a < 0.5. A similar discrepancy has also been found in
neutron scattering experiments for which other predic-
tions of MCT seem to hold [17]. If we use Eq. (6) to
connect the fit parameters a and b and redo the fit, we
find a = 0.39 and b = 0.99, i.e., A = 0.503. We have
included this fit in the graph as well. Although this fit
is less convincing than the first, it is not too bad a fit
and it shows that the exponents can be varied by about
20% without leaving the realm of an acceptable fit. Con-
sequently we must consider this value for b of 0.61 to
compare well with 0.5, the value obtained above from
X4, for the A particles. This also suggests that the dis-
crepancy between the b exponent values found from x7;
for the A and B particles is perhaps less severe than it
seemed earlier. The value of A = 0.503 corresponds to a
value of v = 1.77 [see Eq. (5)] which differs only slightly
from the critical exponents 2.0 and 2.4 we found for the
divergence of the relaxation rate for the A and B parti-
cles, respectively. However, the difference between this «y
and the one obtained from the diffusion constant for the
B particles (1.1) is appreciable.

10'
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FIG. 22.

Rescaled susceptibilities X4z (k,w) for k = 13 vs
rescaled frequency. Solid curves correspond to temperatures
0.35,0.37,0.4,0.44,0.5 (top to bottom). The dashed curve is
the power-law fit given in Eq. (26) with both a and b as free
parameters. Connecting them via Eq. (6) yields the fit shown
as the dotted curve.
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FIG. 23. xn for A particles (squares) as a function of T
for k = 13. The solid line is a power-law fit with 7. = 0.26
and v = 0.63. The dashed curve is fit with 7. = 0.30 and the
MCT value v = 0.5.
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We have also computed the susceptibility x/, for the B
particles for k = 13 at the lowest temperature. As could
be anticipated, since no shoulder appeared in F, for the
B particles, no minimum in the (-relaxation region is
found in x%,. However, the range for the von Schweidler
law is more than an order of magnitude in frequency,
which is quite large compared with the corresponding
range of validity for this law in x¥; for B particles.. For
the exponent we find b = 0.55, which compares well with
the other values of b that we have extracted.

We have tried to test the critical behavior for wpi, im-
plied by Eq. (13). However, Fig. 22 shows that, due to
the noise in the data, the location of the minimum wp;,
is not very well defined. Nevertheless, we can still see
(Fig. 21) that wmin increases monotonically with temper-
ature, but the scatter in the data prevents a power-law fit
from being very informative. Therefore it is not possible
to test Eq. (13). Contrary to the data of wmin, the data
for x1:n is sufficiently good to allow us to test Eq. (14).
Figure 23 shows X, Vs temperature. The error bars of
the individual points are much smaller than the size of
the symbols. Also included in the graph is the result of
a power-law fit with critical exponent 0.63 and critical
temperature 0.26. If one fixes the critical exponent to
the MCT value of 0.5 the critical temperature increases
to 0.30 but we think this fit (also included in the figure)
to be significantly inferior to the first one, indicating that
Eq. (14) is violated.

A further important prediction of MCT is that the lo-
cation of the minimum in the susceptibility for a given
temperature is independent of the quantity. Comparing
Figs. 11(b) and 11(c) we find this, within experimen-
tal error, to be the case for x%; (k,w),k = 7 and 13 for
the A particles. However, if we compare wmin for x7;
and x5 (see Figs. 11 and 21) we recognize that the two
quantities differ by about a factor of 5. This is clearly
larger than the numerical uncertainty for these values,
indicating that the behavior of our system contradicts
this prediction of MCT.

V. SUMMARY AND CONCLUSIONS

Before we present our conclusions of this work we offer
a short summary of the main results.
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By studying the van Hove self correlation function and
the intermediate self scattering function we have found
that our lattice-gas system, with hard-core interactions,
exhibits very slow, temperature-dependent, nonexponen-
tial relaxation behavior at low temperatures. Note that
the slowing down of the dynamics is observed for both
kinds of particles, this despite the fact that at low tem-
peratures about one-third of the A particles have a high
mobility and relax therefore quickly. However, these fast
particles should not influence significantly the relaxation
behavior of the A particles for long times. Therefore it
seems natural to investigate whether the predictions of
MCT (or at least some of them) hold for both types of
particles in our system. Although this theory was orig-
inally developed for simple liquids it was found experi-
mentally that it also applies to much more complex sys-
tems, e.g., certain polymers (see, e.g., [15,23]). With this
in mind the attempt to apply the theory to our system
does not seem to be unreasonable.

An important step in testing the predictions of MCT
is estimating the critical temperature T,. We have tried
to do this by investigating the following quantities: the
diffusion constant Dp for the B particles, the relaxation
times 74 and 7 for the intermediate scattering function
F,, for the A and B particles, respectively, the position
wWmax of the a peak in x%; for A and B particles, the coef-
ficient B,; of the von Schweidler law for A particles, the
value of the susceptibility x/, at wmin for the A particles,
the energy per particle ey, and the value of the suscep-
tibility x%; at wmax for the A and B particles. Except
for the last three quantities MCT predicts that all these
quantities behave like a power law in the vicinity of 7.
In all cases we have found such a behavior, although in
some cases the quality of the data is not good enough
to exclude other fit functions. Thus having a theory in
hand which predicts the analytical form of the fit func-
tion is of great value. Each fit gives T, and a critical
exponent v, and in Table I we summarize our findings.
From this table we estimate T, to be 0.30 &= 0.03. The
lowest temperature at which we think that we can do
an equilibrium simulation for our system is 0.35. Thus
using T, = 0.30 the smallest |¢| = |T, — T'|/T. is about
0.17. However, if we use the not unreasonable value of

TABLE 1. Critical temperature and critical exponent for
various quantities. The last column is the prediction of MCT
for the critical exponent.

Quantity Te Critical MCT
exponent
Dp 0.30 1.1 %
TA 0.327 1.99 ¥
B 0.320 2.36 ¥
WmaxA 0.25 1.0 ¥
WmaxB 0.30 £ 0.02 1.7+0.4 v
Ba 0.26 0.58 3+
Xmin 0.26 0.63 0.5
X axa 0.324 0.19
X axB 0.33 £ 0.02 0.24 + 0.03
€tot 0.32 0.28
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T. = 0.32 the smallest |e| decreases to 0.09. Thus it
does not seem unreasonable to assume that we are in the
temperature regime where the asymptotic expressions of
MCT for |¢] — 0 become valid. We found that the highest
temperatures for which it was reasonable to do a power
law fit are around 0.5-0.7 thus corresponding to an |e|
of order one. Although this value might seem too large
to justify the application of asymptotic expressions, it is
known from experiments that these formulas can be valid
for such high values of |¢| (see, e.g., [15]).

Whereas T, is determined quite well, this is not the
case for the critical exponent v. MCT predicts that the
first five critical exponents in the table should all have the
same value, but this is clearly not true. We have three
values of about 2 and two which are close to 1. Whereas
the former ones are comparable with values found in ex-
periments [14-16] and computer simulations [24, 25], the
latter ones are surprisingly small. However, these low
values are not in contradiction with MCT since they are
above the lower bound for v of unity given by the theory.

The critical exponent for By, is too small to be compat-
ible with MCT, as the theory predicts it to be %+ % > 1.
Also the critical exponent for xi/; shows a significant de-
viation from the MCT value of 0.5.

The last three entries in the table deal with quantities
for which, to the best of our knowledge, MCT does not
make any predictions. The critical exponents for these
three entries are quite a bit smaller than the ones for
the rest of the table. What is especially remarkable is
the critical behavior of xJr... We are not aware of any
place in the literature where experiments showing such a
behavior have been reported.

In addition to the critical temperature and critical ex-
ponent, we have determined the von Schweidler exponent
b for four quantities: x%; for A and B particles, and x%,
for A (two kinds of fits) and B particles. The correspond-
ing values are 0.50 &+ 0.04, 0.73 £+ 0.03 , 0.61, 0.99, and
0.55. Whereas a simple power law was employed to de-
termine the first, second, and fifth of these exponents, the
third and fourth were determined with the fitting func-
tion given in Eq. (26). The third value for the exponent
was obtained by treating a and b as independent fit pa-
rameters and the fourth value by connecting a and b by
the MCT relation in Eq. (6). The difference between the
so obtained two values of b shows that the exact value
of the exponent depends quite sensitively on the number
of fit parameters used. Therefore our values reported for
b might be subject to an appreciable systematic error.
Thus it is difficult to decide if the above values for b are
really compatible with the existence of a single value for
b, but our results suggest that this is probably not the
case. However, the fact that exponents b for x4, for A
and B particles are independent of temperature speaks
in favor of MCT.

Our results for the Lamb-Mossbauer factor and the
position of the minimum in the susceptibility give mixed
results as tests for MCT. Although the k dependence of
the nonergodicity parameter f,; is in qualitative accor-
dance with MCT, its temperature dependence is rather
unusual. However, since our determination of fs; is some-
what indirect and the predictions of MCT for this depen-
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dence are unclear to us, our findings are not necessarily
in contradiction to the theory. More significant is the
fact that the location wpj, of the minimum in the sus-
ceptibility depends on the quantity under investigation,
thus violating one of the predictions of MCT. In accor-
dance with MCT Knaak found that wmin does not de-
pend on the wave vector in the dynamic susceptibility of
Cag.4Ko.6(NO3)1.4 [18]. The same result is found here as
well, but we also find that wp, is not the same in x%;
and x%,. Thus we think this to be a major contradiction
with the theory.

The general version of MCT describes some situations
in which some of the predictions stated in Sec. II no
longer hold [9, 10]. These scenarios occur, for example,
if the transition point is found to be in the vicinity of an
end point of a transition line. As was shown by Gotze and
Haussmann, in the vicinity of such an end point the 8-
relaxation behavior becomes modified in that the power
laws in t are replaced by logarithmic dependences [41].
Since we observe power-law behavior in the S-relaxation
regime this kind of scenario can be ruled out. However,
the same work also proposes another alternative for the
transition: the line crossing scenario. The authors found
that for such a scenario the 3 relaxation is still described
by the two power laws, but for large, but not too large,
times and for € < 0, ®(t) behaves like —|¢|+const xt~1/2,
i.e., a power law plus a small negative constant. This is
exactly the behavior we find for Fy;(k,t), although in our
case the exponent is —0.255. Thus, though we cannot be
sure that our finding can be described by this second
scenario proposed by Gotze and Haussmann, it might
very well be that a mechanism similar to the line cross-
ing scenario is able to rationalize our results. A similar
statement can be made about our findings on the criti-
cal behavior of the value of x%; at wmax. Flach, Gotze,
and Sjégren have proposed a scenario in which the am-
plitude of a peak in X" behaves critically [42]. However,
this scenario would imply that there should be an addi-
tional peak at even lower frequencies and it is not clear
whether this peak is not present or whether it is outside
the frequency range accessible to our simulations.

Finally, it should be noted that there is another possi-
ble explanation of the discrepancies between our results
and mode-coupling theory. As noted earlier, the predic-
tions we have been testing are those of a theory that
neglects the so-called phonon-assisted transport. Such
transport is presumably possible in our model.

Before we end let us briefly examine the importance of
the detailed dynamics of our model for the glasslike be-
havior observed and consider the likely effect of several
modifications of the dynamics. To understand the im-
portance of our dynamics, we must recognize that many
of the attempted moves are rejected at very low temper-
atures. Since the collision part of the algorithm does not
depend on temperature this means that between two suc-
cessful moves the velocity of a particle will be randomized
appreciably. Thus the dynamics at low temperatures will
be similar to that of Metropolis Monte Carlo dynamics
with single-particle moves. The same would be true if the
branching ratio between the collision part and move part
of the algorithm were to be increased. If, on the other
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hand, this ratio were decreased the system would proba-
bly behave even more sluggishly than it does now since
it will be harder for each particle to change its direction
to move and will therefore be trapped more easily.

It is also interesting to compare our results to those ob-
tained by Ajay and Palmer for their sliding block model
[35]. They too find a relaxation behavior which for inter-
mediate times behaves like a von Schweidler law. Their
exponent is around 0.51, which is in agreement with a
theoretical prediction by Brummelhuis and Hilhorst [43].
This is an additional indication that in lattice-gas models
with hard-core interactions algebraic decays in the relax-
ation function can occur, thus giving further evidence for
the broad applicability of MCT.

In summary, we have shown that, despite its simplic-
ity, our hard-core lattice-gas model exhibits many of the
dynamical phenomena observed in real glass formers. We
have found that much of the behavior predicted by MCT
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is exhibited by the model, although many of the pre-
dictions seem to be only qualitatively correct (e.g., the
existence of the von Schweidler law, the existence of var-
ious power laws, and the scaling behavior in the vicinity
of the minimum of the susceptibility) rather than quan-
titatively correct (e.g., various critical exponents do not
have the same value and the location of the minimum in
the susceptibility is different for different susceptibility
functions).
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